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ABSTRACT

Respiratory distress syndrome (RDS) impacts a high proportion of preterm neonates, resulting in 
significant morbidity and mortality. Advances in pharmacotherapy, specifically antenatal corticosteroids 
and postnatal surfactant therapy, have significantly reduced the incidence and impact of neonatal 
RDS. Antenatal corticosteroids accelerate fetal lung maturation by increasing the activity of enzymes 
responsible for surfactant biosynthesis, resulting in improved lung compliance. Maternal antenatal 
corticosteroid treatment has improved survival of preterm neonates and lowered the incidence of brain 
injury. After birth, exogenous surfactant administration improves lung compliance and oxygenation, 
resulting in reductions in the incidence of pneumothorax and of death. Future research will identify the 
optimal surfactant product, timing of the initial dose, and mode of delivery.
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The prevention and treatment of 
neonatal respiratory distress syndrome 

(RDS) represents both a remarkable suc-
cess and persistent challenge in the care of 
neonates. The incidence of RDS is inversely 
proportional to gestational age with disease 
occurring in nearly all preterm neonates born 
at 22–28 weeks’ estimated gestation, approx-
imately 3  percent of late preterm neonates 
born at 34–36 weeks’ gestation, and 0.12 per-
cent of term neonates born at >37 weeks’ 
gestation.1–3 Among late preterm and term 
neonates, male sex and Caucasian ethnicity 
are associated with increased risk of  RDS.2 
Experimental animal data suggest the sex 
difference may be because of androgen inhi-
bition of surfactant production in males and 
estrogen acceleration of lung maturation and 
surfactant production  in females.4 Although 
the mechanism underlying the racial disparity 
in RDS has not been elucidated, genetic fac-
tors contribute to the development and sever-
ity of RDS.5–7 Additional risk factors include 

elective delivery in the absence of labor and 
perinatal hypoxia-ischemia.8 Also, maternal 
diabetes may increase RDS risk by produc-
ing fetal hyperglycemia and hyperinsulinism, 
which decrease synthesis and secretion of sur-
factant from alveolar Type II cells.9–11

The outcome of premature neonates with 
RDS has improved substantially over the past 
50 years. In 1963, Patrick Bouvier Kennedy, 
the fourth child of President and Mrs. John 
F.  Kennedy, was born prematurely at 34 
weeks’ gestation and died at two days of life 
from RDS. His course was not uncommon 
for the time, as the mortality rate of neonates 
with RDS was approximately 40  percent. 
Fifty years later, many neonates born as pre-
maturely as 23 weeks’ gestation with RDS 
survive12; however, RDS remains a leading 
cause of neonatal morbidity and mortality 
among neonates born in the United States.13 
The two major advances in obstetric and 
neonatal intensive care that have contributed 
to improved survival among neonates with 
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RDS are antenatal corticosteroid administration to acceler-
ate pulmonary maturity and postnatal surfactant replacement 
therapy.

PATHOPHYSIOLOGY
Neonatal RDS results from impaired or delayed produc-

tion and secretion of pulmonary surfactant, a protein-phos-
pholipid mixture that lowers surface tension at the air–liquid 
interface of the alveolus. Insufficient surfactant production or 
secretion results in higher alveolar surface tension, leading to 
atelectasis and impaired gas exchange. Surfactant phospho-
lipids and proteins are synthesized in alveolar Type II cells, 
packaged into lamellar bodies (lysosome-related, specialized 
intracellular organelles), and released into the alveolar lumen 
via exocytosis. Within the alveolar lumen, lamellar bodies 
unravel to form tubular myelin, a lattice structure upon 
which phospholipids adsorb to create the interface between 
air and liquid.14 Alveolar Type II cells differentiate during 
the canalicular stage of fetal lung development and lamellar 
bodies appear by approximately 22 weeks’ gestation. Surfac-
tant production increases in lung tissue until approximately 
35 weeks’ gestation.15,16 Surfactant production is compro-
mised by acidosis, cold stress, hypovolemia, and hypoxemia 
even in the setting of mature alveolar Type II cells. Postnatal 
exposures may also impact surfactant production. Specifically, 
invasive mechanical ventilation may result in exposure to high 
inspired oxygen concentrations, excess ventilatory pressures 
(resulting in barotrauma), and overdistention of the neona-
tal lung (resulting in volutrauma). These exposures trigger 
the release of proinflammatory cytokines and chemokines 
damaging the alveolar epithelial lining, resulting in impaired 
surfactant synthesis. Additionally, the leakage of fibrin and 
other proteins from the alveolar surface promotes surfactant 
inactivation.

The autopsies of neonates dying from RDS reveal a 
nearly uniformly airless lung. Microscopic examination 
reveals diffuse atelectasis surrounding a few widely dilated 
terminal bronchioles and alveolar ducts. A fibrinous eosin-
ophilic membrane (or hyaline membrane) containing cellu-
lar debris derived from blood and injured epithelium lines 
these airspaces. This classic postmortem finding established 
the initial nomenclature for RDS as hyaline membrane 
disease.17,18

Immature pulmonary epithelial membrane transport pro-
teins also contribute to the respiratory manifestations of sur-
factant deficiency. In utero, fluid follows chloride ions actively 
secreted into the alveolar spaces via sodium-potassium-chloride 
co-transporters and other cellular ion transporters.19 These ion 
transporters are down-regulated in late gestation, slowing the 
accumulation of fetal lung fluid.20,21 During labor, a rise in epi-
nephrine levels induces sodium absorption via epithelial sodium 
channels and sodium-potassium-ATPase.22 Maximal expres-
sion of epithelial sodium channels occurs in late gestation.23,24 
Hence, premature birth or delivery in the absence of labor can 
result in excess fetal lung fluid at birth; the inability to remove 

this fluid after birth can result in pulmonary edema which exac-
erbates respiratory distress.25

The initial hypoxemia from RDS secondary to surfactant 
deficiency will likely worsen without appropriate interven-
tion. Decreased oxygen delivery to peripheral tissues results 
in anaerobic metabolism leading to generation of lactic acid. 
Acidosis prevents the natural dilation of the pulmonary 
vasculature after birth and can lead to the development of 
persistent pulmonary hypertension of the newborn. In this 
setting, right-to-left (pulmonary-to-systemic) shunting of 
deoxygenated blood from the pulmonary artery through the 
ductus arteriosus into the systemic circulation before oxygen-
ation in the lungs perpetuates the cycle of hypoxemia and 
acidosis.

Uncomplicated RDS typically worsens for two to three 
days after birth before gradual recovery. Complications of 
RDS include development of air leaks (e.g., pneumotho-
rax or pneumomediastinum), hemodynamically  significant 
patent ductus arteriosus, pulmonary hemorrhage, intraven-
tricular hemorrhage (IVH), and bronchopulmonary dysplasia 
(BPD, defined as a requirement for supplemental oxygen at 
36 weeks’ corrected gestational age).

CLINICAL PRESENTATION
Although a definitive diagnosis of RDS requires patho-

logic or biochemical documentation of surfactant deficiency, 
clinicians commonly utilize a combination of clinical and 
radiographic features to diagnose RDS. Clinical symptoms 
present soon after birth and include tachypnea, grunting, 
subcostal and intercostal retractions, nasal flaring, and cyano-
sis. In severe cases of RDS, neonates may progress to respira-
tory failure requiring intubation and mechanical ventilation.

The chest radiograph reveals a diffuse, symmetric, retic-
ulogranular pattern in the peripheral lung fields, mimicking 
the appearance of ground glass. This pattern results from the 
combination of alveolar atelectasis and pulmonary edema. 
Superimposed air bronchograms, or large bronchioles filled 
with air surrounded by small collapsed alveoli, can be seen. 
In severe cases, complete opacification or “white-out” of the 
lungs may be observed.

PREVENTION
Widespread utilization of antenatal corticosteroids in cases 

of impending preterm delivery has substantially reduced 
the mortality associated with neonatal RDS. Examining the 
impact of corticosteroids on premature delivery in 1969, 
Liggins observed the absence of RDS in exposed premature 
lambs.26 Antenatal corticosteroids at levels mimicking physio-
logic stress accelerate fetal lung maturation by increasing the 
activity of enzymes responsible for surfactant biosynthesis.27 
Physiologic and morphometric measurements suggest struc-
tural lung maturation accompanies the increased alveolar sur-
factant pool size.28 Clinically, these physiologic and structural 
changes result in improved lung compliance.
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In 1972, Liggins and Howie published the first prospec-
tive, blinded, controlled trial of antenatal betamethasone 
treatment in mothers at risk of  premature delivery.29 The 
results of this trial and others (30 total trials including 8,158 
infants) have demonstrated a reduction in the incidence of 
RDS in neonates born before 34 weeks’ gestation after treat-
ment with antenatal corticosteroids (risk ratio [RR] 0.66, 
95% confidence interval [CI] 0.56–0.77, number needed to 
treat [NNT] 17) and improvement in neonatal survival (RR 
of death 0.69, 95% CI 0.59–0.81, NNT 36).30 Additional 
benefits to the neonate include a reduction in the incidences 
of IVH  (RR 0.55, 95% CI 0.40–0.76, NNT 46) and nec-
rotizing enterocolitis  (RR 0.50, 95% CI 0.32–0.78, NNT 
87).30,31

The risks of corticosteroids to the mother and neonate 
appear to be minimal. Although there have been concerns 
regarding the impact of antenatal corticosteroids on the inci-
dence of postnatal infection, studies in the setting of pro-
longed rupture of membranes suggest no impact on the 
incidence of maternal or neonatal infection.32 Antenatal cor-
ticosteroids may increase total leukocyte and immature neu-
trophil counts in neonates; this should be considered in the 
clinical evaluation of early onset neonatal sepsis.

Although corticosteroids have been routinely given to 
mothers who are at risk of preterm delivery at less than 34 
weeks’ gestation for over two decades, more recently, benefits 
from antenatal corticosteroids have also been observed in late 
preterm neonates born at 34–36 weeks’ estimated gestation. 
In a recent, large, randomized controlled trial of 2,827 late 
preterm neonates, antenatal betamethasone therapy reduced 
the need for resuscitation at birth (14.5 percent vs 18.7 per-
cent, p = .003), postnatal surfactant therapy (1.8 percent vs 
3.1 percent, p = .004), and prolonged continuous positive 
airway pressure (CPAP) or high-flow nasal cannula (11.6 per-
cent vs 14.4 percent, p = .02).33 Late preterm neonates who 
were exposed to antenatal steroids had an increased inci-
dence of hypoglycemia (<40 mg/dL  [<2.2 mmol/L]) and 
careful blood glucose monitoring is recommended for these 
neonates.34

Current guidelines recommend a single course of ante-
natal corticosteroids be administered to all mothers at 
risk of preterm delivery between 24 and 33 6/7 weeks’ ges-
tation.35 Antenatal steroids should be considered for women 
between 34 and 36 6/7 weeks’ gestation who are at risk 
of preterm birth within the next seven  days and have not 
previously received corticosteroids to accelerate fetal lung 
maturity.35 The optimal corticosteroid (betamethasone or 
dexamethasone) has not been elucidated and requires fur-
ther investigation.36 The optimal window for corticosteroid 
administration is 24 hours to seven days before birth. Admin-
istration before or after this window does produce benefit 
compared to no therapy.37,38 Administration of a rescue course 
of corticosteroids is currently recommended for a woman at 
risk of preterm delivery before 34 weeks’ gestation whose 
previous course was received more than 14 days prior.35,39 

Concerns exist regarding fetal brain and lung growth as well 
as adrenal suppression. However, studies assessing children 
exposed to repeat courses of antenatal corticosteroids find 
no difference regarding physical or neurologic outcome at 
two years of age.40 On this basis, the benefits of repeat courses 
warrant individual consideration.

TREATMENT
Nonpharmacologic Treatment

Appropriate treatment of neonatal RDS requires optimal 
respiratory support provided by an experienced multidisci-
plinary medical care team. Airway and alveolar expansion 
must be maintained to ensure adequate oxygenation and 
ventilation, often through the exogenous delivery of dis-
tending pressure. The desire to avoid the pulmonary damage 
associated with invasive mechanical ventilation has led to the 
extensive study of noninvasive CPAP in premature neonates 
with RDS. The value of CPAP in the absence of exogenous 
surfactant therapy remains an area of active research (see dis-
cussion regarding timing of surfactant therapy). Regardless of 
the method of respiratory support, diligent monitoring of gas 
exchange through measurement of blood gases is essential in 
neonates with RDS. Generally, goal arterial blood gas param-
eters include a pH of 7.25–7.35, PaCO2 of 40–55 mmHg, 
and PaO2 of 50–80 mmHg.

Surfactant
The discovery of surfactant and the development of surfac-

tant products for exogenous administration have substantially 
improved morbidity and mortality in neonates with RDS. In 
1929, von Neergaard filled a porcine lung with isotonic solu-
tion to evaluate the impact of surface tension on air–tissue 
interfaces. His experiment demonstrated that surface tension 
is largely responsible for lung recoil.41 In the 1950s, Avery and 
Mead demonstrated that lung extracts from neonates who 
died of RDS had reduced surface tension and a deficiency of 
pulmonary surfactant.18 The 1963 death of Patrick Kennedy 
raised public awareness of RDS and drove research of poten-
tial treatments. Initial studies administered artificial phospho-
lipids via aerosol to neonates with RDS with disappointing 
results.42 Subsequent preclinical experiments demonstrated 
improved oxygenation and lung compliance utilizing natural 
surfactant derivatives administered by endotracheal instilla-
tion. In 1980, Fujiwara and colleagues developed a mixture 
of natural and synthetic surface-active lipids for use in human 
neonates, resulting in the survival of eight of ten preterm 
neonates with severe RDS (gestational ages 28-33 weeks).43 
Controlled trials of numerous surfactant products were con-
ducted in the 1980s before the U.S. Food and Drug Admin-
istration (FDA) approval of colfosceril palmitate (Exosurf), 
a protein-free synthetic surfactant, in 1990. Colfosceril pal-
mitate is no longer marketed because of clinical inferiority to 
natural surfactant products. Three natural surfactant products 
have received FDA approval: beractant (Survanta) in 1991, 
calfactant (Infasurf) in 1998, and poractant alfa (Curosurf) in 
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1998. In 2012, lucinactant (Surfaxin), a synthetic surfactant 
containing protein, received FDA approval (Table 1).

Structure and Function of Surfactant. Surfactant is 
composed of phospholipids, neutral lipids, and surfactant 
proteins (Figure  1). The phospholipid component is com-
prised mainly by dipalmitoyl phosphatidylcholine (DPPC), 
which has a hydrophilic head and hydrophobic tail and 
reduces surface tension at the air–liquid interface of the 
alveolar surface, lowering the pressure required to maintain 
lung expansion during the respiratory cycle (Figure  2).44 

Additional phospholipids in pulmonary surfactant include 
phosphatidylglycerol, phosphatidylinositol, phosphatidylser-
ine, and phosphatidylethanolamine.

Surfactant proteins A, B, C, and D compose a small percent-
age of the weight of natural surfactant. However, they serve vital 
functions, including facilitation of phospholipid spreading and 
adsorption in vivo. Surfactant protein A (SP-A) regulates pul-
monary surfactant turnover, contributes to immune function, 
and is necessary for the formation of tubular myelin.45 Surfac-
tant protein B (SP-B) is also essential to the formation of tubu-
lar myelin. SP-B is highly hydrophobic and the major surfactant 

Table 1 ■  Comparison of Exogenous Surfactant Products

Surfactant Source Components

Phospholipid
Concentration

(%)
Dose 

(mg/kg)
Dose 

(mL/kg)
Frequency
(in Hours)

Maximum 
Number Of 

Doses

Colfosceril palmitate 
(Exosurf)

Synthetic Phospholipids 1.35 67.5 5 Every 12 2

Beractant
(Survanta)

Minced bovine lung 
extract

Phospholipids,
SP-B (<0.1%), SP-C

2.5 100 4 Every 6–12 4

Calfactant
(Infasurf)

Calf lung lavage Phospholipids,
SP-B (0.26 mg/mL), SP-C

3.5 100 3 Every 12 3

Poractant alfa (Curosurf) Minced porcine lung 
extract

Phospholipids,
SP-B (0.2 mg/mL), SP-C

7.6 200 Initial: 2.5
Repeat: 1.25

Every 12 3

Lucinactant (Surfaxin) Synthetic Phospholipids,
0.1 mg/mL sinapultide 

(synthetic SP-B)

3 174 5.8 Every 6–12 4

Figure 1 ■  Composition of pulmonary surfactant.
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component responsible for stabilizing the phospholipid layer 
laterally. Additionally, SP-B facilitates resistance to inactivation 
of surfactant by substances including meconium and serum.46 
Recessive loss of function mutations in the gene encoding 
SP-B result in lethal respiratory distress.47 Surfactant protein C 
(SP-C) increases adsorption of DPPC and other phospholipids 
to the air–liquid interface.46 Infants and children with domi-
nant mutations in the gene encoding SP-C can present with 
interstitial lung disease, and more rarely with neonatal RDS.48 
Surfactant protein D (SP-D) is composed of lectins, suggesting 
a role in bacterial opsonization and host lung defense.45

Efficacy. Initial trials of the synthetic surfactant prepara-
tion colfosceril palmitate demonstrated significant reductions 
in the incidence of pneumothorax and mortality.49 However, 
natural surfactants demonstrate superiority when compared 
to colfosceril palmitate, emphasizing the essential role of 

proteins to surfactant function (Table 2).50 Despite its impact 
on mortality, surfactant administration does not consistently 
reduce the incidence of other morbidities associated with 
preterm birth, including IVH and BPD. These findings may 
be explained by increased survival in very preterm neonates 
at highest risk of these comorbidities. However, natural sur-
factant therapy reduces the composite incidence of death or 
severe disability at one year of age.51

The comparison of efficacy among natural surfactants 
provides unique challenges and produces ongoing debate. 
Numerous randomized trials comparing standard doses of 
beractant with calfactant and beractant with poractant alfa 
have found no significant differences in mortality or BPD 
between therapies.52 A large retrospective analysis by Trem-
bath and colleagues (N = 51,282 neonates) failed to con-
firm any mortality difference between the available natural 
surfactant products.53 A randomized trial of calfactant and 

Figure 2 ■  Pressure–volume relationship for the inflation and deflation of a surfactant-deficient and surfactant-treated lung. 
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high-dose poractant alfa may be useful to supplement the lack 
of direct comparisons of these surfactant products.

Lucinactant, a novel synthetic surfactant, represented an 
additional therapeutic alternative.54 Preclinical studies sug-
gested improved resistance to inactivation by serum pro-
teins and reactive oxygen species because of the presence of 
sinapultide, a synthetic peptide with similar activity to SP-B. 
Additionally, the synthetic nature allows avoidance of animal 
product exposure. Two clinical trials, including a total of 
1,028 preterm neonates, demonstrated equivalence between 
lucinactant and natural surfactants and led to U.S. FDA 
approval in 2012 (see Table 2).55 Practical concerns existed, 
including the larger volume standard dose, the requirement 
for warming and cooling before administration, and limited 
stability after warming. Limited adoption in clinical practice 
led to market withdrawal in 2015.

Adverse Effects. Administration of exogenous surfactant 
can result in transient airway obstruction, potentially leading 
to oxygen desaturation and bradycardia. The airway obstruc-
tion may be severe enough to induce changes in cerebral 
blood flow velocity, increasing the risk of IVH.56 The asso-
ciation between surfactants and periventricular leukomalacia, 
a form of white matter brain injury common in premature 
neonates, remains controversial. The proposed mechanism 
for this finding is a rapid increase in compliance leading to 
overventilation and hypocarbia, which reduces cerebral blood 
flow. Diligent respiratory monitoring and ventilator adjust-
ment to avoid hypocarbia may mitigate this effect. An asso-
ciation between surfactant administration and pulmonary 
hemorrhage has also been reported.57 This adverse effect 
likely results from improvements in lung compliance and oxy-
genation that promote pulmonary vasodilation and left-to-
right shunting through the ductus arteriosus. The resultant 
increase in pulmonary blood flow may produce pulmonary 
congestion and increased alveolar capillary pressure. Rupture 
of these capillaries results in intra-alveolar hemorrhagic pul-
monary edema.

Administration. Surfactant products should be stored in 
a refrigerator and protected from light until ready for use. 
Natural surfactants should be allowed to warm to room 

temperature before   administration. The natural surfactant 
suspension should be gently swirled, but not shaken, to 
ensure complete dispersion before administration. Unopened 
vials warmed to room temperature may be returned to the 
refrigerator once within 8 hours (beractant) or 24 hours (cal-
factant and poractant alfa) for future use. Traditionally, the 
surfactant suspension is instilled into the neonate’s endotra-
cheal tube. The total dose should be administered in two to 
four aliquots with careful attention paid to infant positioning 
to ensure symmetric distribution. Ventilation and positive 
end expiratory pressure should be maintained during surfac-
tant administration by an experienced clinician. Adjustment 
of mechanical ventilator settings during and after surfactant 
administration is required as the pulmonary compliance of 
the neonate may improve markedly.

In an effort to reduce barotrauma associated with posi-
tive pressure ventilation and mitigate several adverse effects 
discussed previously, clinicians have developed less-invasive 
methods of surfactant administration.58 In a randomized 
controlled trial of 220 extremely preterm neonates, admin-
istration of surfactant via a thin plastic catheter guided by 
laryngoscopy resulted in a decreased need for mechanical 
ventilation; however, there were no differences in mortality 
or the incidence of BPD.59 Additional studies may clarify the 
risks and benefits of this approach, including the technical 
feasibility of more widespread utilization.

Timing of the Initial Surfactant Dose. Traditionally, 
administration of surfactant early in the course of respiratory 
distress (<2 hours of life) has been preferred. Earlier dosing 
provides superior lung dispersion and minimizes the duration 
of mechanical ventilation. Meta-analyses of trials comparing 
early versus delayed (two or more hours after birth) surfac-
tant administration in preterm neonates requiring mechanical 
ventilation demonstrate decreased risk of pneumothorax and 
pulmonary interstitial emphysema with early administration.60 
Early administration reduces neonatal mortality and BPD.60 
Consequently, neonates born at less than 30 weeks’ estimated 
gestation requiring endotracheal intubation for RDS should 
receive early surfactant therapy.61

However, routine application of CPAP in the delivery 
room has facilitated consideration of prophylactic versus 

Table 2 ■  Relative Risks of Potential Beneficial Effects of Exogenous Surfactant Therapy49,50,55

Outcome

Prophylaxis Rescue

First Generation 
Synthetic vs Placebo

Natural vs
First Generation 

Synthetic
Second Generation 
Synthetic vs Natural

First Generation 
Synthetic vs Placebo

Natural vs
First Generation 

Synthetic

Second Generation 
Synthetic vs 

Natural

Pneumothorax 0.64 (0.49–0.89) 0.70 (0.46–1.07) 1.00 (0.73–1.37) 0.52 (0.42–0.65) 0.64 (0.53–0.77) –

IVH 0.94 (0.73–1.21) 1.13 (1.00–1.27) 1.01 (0.88–1.15) 0.95 (0.73–1.24) 1.03 (0.94–1.14) –

BPD 1.09 (0.80–1.47) 1.01 (0.89–1.15) 0.99 (0.84–1.18) 0.88 (0.67–1.17) 0.98 (0.86–1.11) –

Death 0.67 (0.52–0.88) 0.93 (0.77–1.13) 0.79 (0.61–1.02) 0.60 (0.42–0.85) 0.86 (0.75–0.99) –

Abbreviations: BPD = bronchopulmonary dysplasia = oxygen requirement at 36 weeks’ postmenstrual age; IVH = intraventricular hemorrhage.
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rescue surfactant therapy in preterm neonates. In populations 
with widespread antenatal corticosteroid use and routine pro-
vision of optimal noninvasive CPAP in the delivery room, up 
to 17 percent of extremely preterm neonates 24–27 weeks’ 
estimated gestation and approximately 50 percent of neonates 
born at 26–30 weeks’ gestational age do not require invasive 
mechanical ventilation or surfactant.62,63 With increased utili-
zation of antenatal corticosteroids and routine post-delivery 
stabilization on CPAP, a strategy of early selective surfactant 
administration to neonates requiring intubation reduces the 
risk of BPD and death as compared to routine prophylactic 
surfactant administration.64

Single vs Multiple Doses. Neonates with established 
RDS may benefit from multiple doses of surfactant. Random-
ized trials of multiple dose strategies demonstrate a reduced 
incidence of pneumothorax and a trend toward reduced mor-
tality compared to single dose administration.65 Criteria for 
clinically  indicated repeat dosing are highly variable. Most 
commonly, neonates receive subsequent doses of surfactant 
at 12-hour intervals for increased inspired oxygen >40 per-
cent. A maximum of three additional doses of beractant and 
two additional doses of calfactant or poractant alfa should be 
administered in the first 48 hours of life.

Trials of late surfactant administration have produced 
mixed results. A randomized controlled trial of 511 extremely 
preterm newborns given calfactant or placebo every one 
to three days to a maximum of five doses while intubated 
demonstrated no difference in the incidence of BPD or death 
at 36 weeks’ postmenstrual age.66 A smaller randomized con-
trolled trial of poractant alfa versus placebo in 118 preterm 
neonates who required mechanical ventilation at 14 days of 
life produced similar short-term outcomes.67 However, this 
trial documented a reduced incidence of rehospitalization for 
respiratory complications after discharge in treated neonates 
(28.3 percent vs 51.1 percent, p = .03). Long-term follow-up 
of the larger trial will inform the inception and design of 
future trials of late surfactant administration.

CONCLUSION
The outcome of neonates with RDS has substantially 

improved over the past 50 years, in large part because of 
the widespread utilization of pharmacologic prevention 
and treatment strategies. Antenatal corticosteroids facilitate 
pulmonary maturation in the setting of impending preterm 
birth. After birth, preterm neonates benefit from exogenous 
surfactant therapy. Despite substantial progress, mortality 
and morbidities are still common among preterm neonates. 
Continued research will improve both survival and quality of 
life in these children.
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